Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Agricultural intensification, Indigenous stewardship and land sparing in tropical dry forests

Abstract

Agricultural intensification, an increase in per-area productivity, may spare forests otherwise lost to agricultural expansion. Yet which conditions enable such sparing or whether intensification amplifies deforestation through rebound effects remains hotly debated. Using a multilevel Bayesian regression framework, we analyse the effects of agricultural intensification on deforestation in the world’s understudied and threatened tropical dry forests. We find that, overall, intensification has not lowered deforestation in tropical dry forests, particularly in countries where commodity crop production dominates—a situation typical for many areas where agriculture is expanding. However, country-level intensification reduced deforestation in areas where Indigenous land stewardship is widespread. More appropriately acknowledging the critical role of Indigenous peoples in preventing rebound effects, either on their lands or on the wider surrounding area, as well as recognizing and enforcing their rights, could thus translate into major opportunities for agricultural intensification to deliver positive outcomes for people and nature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Framework for assessing how agricultural intensification relates to forest loss.
Fig. 2: Yield change and forest loss dynamics.
Fig. 3: Conditional interaction effects of market orientation and Indigenous land stewardship across continents.
Fig. 4: Social–ecological context in TDF regions.
Fig. 5: Potential future forest loss associated with agricultural intensification.

Similar content being viewed by others

Data availability

Datasets used in this analysis are publicly available. Forest cover and loss data are available at https://data.globalforestwatch.org/; agricultural production statistics are available at https://www.fao.org/faostat/en/#data; population density data are available at https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11; accessibility data are available at https://figshare.com/articles/dataset/Travel_time_to_cities_and_ports_in_the_year_2015/7638134; agricultural suitability data are available at https://www.gaez.iiasa.ac.at/. Indigenous peoples’ lands data were derived from the spatial layer created in https://doi.org/10.1038/s41893-018-0100-6, but restrictions apply to the availability of these data. However, data are available from the corresponding author S.T.G. of the original paper upon reasonable request.

References

  1. Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    CAS  Google Scholar 

  2. Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    CAS  Google Scholar 

  3. Campbell, B. M. et al. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol. Soc. 22, 8 (2017).

  4. Giam, X. Global biodiversity loss from tropical deforestation. Proc. Natl Acad. Sci. USA 114, 5775–5777 (2017).

    CAS  Google Scholar 

  5. Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–116 (2014).

    Google Scholar 

  6. Levers, C. et al. Agricultural expansion and the ecological marginalization of forest-dependent people. Proc. Natl Acad. Sci. USA 118, e2100436118 (2021).

    CAS  Google Scholar 

  7. Summary for Policymakers of the Assessment Report on Land Degradation and Restoration of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2018).

  8. The Future of Food and Agriculture: Trends and Challenges (FAO, 2017).

  9. Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    CAS  Google Scholar 

  10. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    CAS  Google Scholar 

  11. Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

    CAS  Google Scholar 

  12. Verburg, P. H. et al. Land system science and sustainable development of the Earth system: a global land project perspective. Anthropocene 12, 29–41 (2015).

    Google Scholar 

  13. Meyfroidt, P. et al. Middle-range theories of land system change. Glob. Environ. Change 53, 52–67 (2018).

    Google Scholar 

  14. Byerlee, D., Stevenson, J. & Villoria, N. Does intensification slow crop land expansion or encourage deforestation? Glob. Food Sec. 3, 92–98 (2014).

    Google Scholar 

  15. Carrasco, L. R., Larrosa, C., Milner-Gulland, E. J. & Edwards, D. P. A double-edged sword for tropical forests. Science 346, 38–40 (2014).

    CAS  Google Scholar 

  16. Kremen, C. Reframing the land-sparing/land-sharing debate for biodiversity conservation. Ann. NY Acad. Sci. 1355, 52–76 (2015).

    Google Scholar 

  17. Lambin, E. F. & Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl Acad. Sci. USA 108, 3465–3472 (2011).

    CAS  Google Scholar 

  18. Rodríguez García, V., Gaspart, F., Kastner, T. & Meyfroidt, P. Agricultural intensification and land use change: assessing country-level induced intensification, land sparing and rebound effect. Environ. Res. Lett. 15, 085007 (2020).

  19. Meyfroidt, P. et al. Multiple pathways of commodity crop expansion in tropical forest landscapes. Environ. Res. Lett. 9, 074012 (2014).

  20. Angelsen, A. & Kaimowitz, D. in Agricultural Technologies and Tropical Deforestation (eds Angelsen, A. & Kaimowitz, D.) 396–415 (CABI Publishing & CIFOR, 2001).

  21. Hertel, T. W., West, T. A. P., Börner, J. & Villoria, N. B. A review of global-local-global linkages in economic land-use/cover change models. Environ. Res. Lett. 14, 053003 (2019).

  22. Phalan, B. et al. Avoiding impacts on biodiversity through strengthening the first stage of the mitigation hierarchy. Oryx 52, 316–324 (2018).

    Google Scholar 

  23. Rudel, T. K. et al. Agricultural intensification and changes in cultivated areas, 1970–2005. Proc. Natl Acad. Sci. USA 106, 20675–20680 (2009).

    CAS  Google Scholar 

  24. Ceddia, M. G., Bardsley, N. O., Gomez-Y-Paloma, S. & Sedlacek, S. Governance, agricultural intensification, and land sparing in tropical South America. Proc. Natl Acad. Sci. USA 111, 7242–7247 (2014).

    CAS  Google Scholar 

  25. Hertel, T. W. Economic perspectives on land use change and leakage. Environ. Res. Lett. 13, 075012 (2018).

  26. Hertel, T. W., Ramankutty, N. & Baldos, U. L. C. Global market integration increases likelihood that a future African Green Revolution could increase crop land use and CO2 emissions. Proc. Natl Acad. Sci. USA 111, 13799–13804 (2014).

    CAS  Google Scholar 

  27. Meyfroidt, P., Lambin, E. F. & Hertel, T. W. Globalization of land use: distant drivers of land change and geographic displacement of land use. Curr. Opin. Environ. Sustain. 5, 438–444 (2013).

    Google Scholar 

  28. DeFries, R. S., Rudel, T., Uriarte, M. & Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 3, 178–181 (2010).

    CAS  Google Scholar 

  29. Pendrill, F. et al. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Change 56, 1–10 (2019).

    Google Scholar 

  30. Pirard, R. & Belna, K. Agriculture and deforestation: is REDD+ rooted in evidence? For. Policy Econ. 21, 62–70 (2012).

    Google Scholar 

  31. Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1, 369–374 (2018).

    Google Scholar 

  32. Baragwanath, K. & Bayi, E. Collective property rights reduce deforestation in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 117, 20495–20502 (2020).

    CAS  Google Scholar 

  33. Vasco, C., Bilsborrow, R., Torres, B. & Griess, V. Agricultural land use among Mestizo colonist and Indigenous populations: contrasting patterns in the Amazon. PLoS ONE 13, e0199518 (2018).

  34. le Polain de Waroux, Y. et al. The role of culture in land system science. J. Land Use Sci. 16, 450–466 (2021).

    Google Scholar 

  35. Ceddia, M. G., Gunter, U. & Corriveau-Bourque, A. Land tenure and agricultural expansion in Latin America: the role of Indigenous peoples’ and local communities’ forest rights. Glob. Environ. Change 35, 316–322 (2015).

    Google Scholar 

  36. Sze, J. S., Carrasco, L. R., Childs, D. & Edwards, D. P. Reduced deforestation and degradation in Indigenous lands pan-tropically. Nat. Sustain. 5, 123–130 (2022).

    Google Scholar 

  37. Meyfroidt, P. et al. Ten facts about land systems for sustainability. Proc. Natl Acad. Sci. USA 119, e2109217118 (2022).

    CAS  Google Scholar 

  38. Banda-R, K. et al. Plant diversity patterns in neotropical dry forests and their conservation implications. Science 353, 1383–1387 (2016).

    CAS  Google Scholar 

  39. Schröder, J. M., Rodríguez, L. P. A. & Günter, S. Forest policy and economics research trends: tropical dry forests: the neglected research agenda? For. Policy Econ. 122, 102333 (2021).

  40. Parr, C. L., Lehmann, C. E. R., Bond, W. J., Hoffmann, W. A. & Andersen, A. N. Tropical grassy biomes: misunderstood, neglected, and under threat. Trends Ecol. Evol. 29, 205–213 (2014).

    Google Scholar 

  41. Kuemmerle, T. et al. Forest conservation: remember Gran Chaco. Science 355, 465–467 (2017).

    CAS  Google Scholar 

  42. Strassburg, B. B. N. et al. Moment of truth for the Cerrado hotspot. Nat. Ecol. Evol. 1, 0099 (2017).

    Google Scholar 

  43. Ordway, E. M., Asner, G. P. & Lambin, E. F. Deforestation risk due to commodity crop expansion in sub-Saharan Africa. Environ. Res. Lett. 12, 044015 (2017).

  44. Buchadas, A., Baumann, M., Meyfroidt, P. & Kuemmerle, T. Uncovering major types of deforestation frontiers across the world’s tropical dry woodlands. Nat. Sustain. 5, 619–627 (2022).

    Google Scholar 

  45. Ewers, R. M., Scharlemann, J. P. W., Balmford, A. & Green, R. E. Do increases in agricultural yield spare land for nature? Glob. Change Biol. 15, 1716–1726 (2009).

    Google Scholar 

  46. Villoria, N. B. Technology spillovers and land use change: empirical evidence from global agriculture. Am. J. Agric. Econ. 101, 870–893 (2019).

    Google Scholar 

  47. Meyfroidt, P. et al. Focus on leakage and spillovers: informing land-use governance in a tele-coupled world. Environ. Res. Lett. 15, 090202 (2020).

  48. Wunder, S. in Agricultural Technologies and Tropical Deforestation (eds Angelsen, A. & Kaimowitz, D.) 167–194 (CABI Publishing & CIFOR, 2001).

  49. Kaimowitz, D. & Smith, J. in Agricultural Technologies and Tropical Deforestation (eds Angelsen, A. & Kaimowitz, D.) 195–212 (CABI Publishing & CIFOR, 2001).

  50. Rudel, T. K., Defries, R., Asner, G. P. & Laurance, W. F. Changing drivers of deforestation and new opportunities for conservation. Conserv. Biol. 23, 1396–1405 (2009).

    Google Scholar 

  51. le Polain de Waroux, Y. et al. Rents, actors, and the expansion of commodity frontiers in the Gran Chaco. Ann. Am. Assoc. Geogr. 108, 204–225 (2018).

    Google Scholar 

  52. Henderson, J., Godar, J., Frey, G. P., Börner, J. & Gardner, T. The Paraguayan Chaco at a crossroads: drivers of an emerging soybean frontier. Reg. Environ. Change 21, 72 (2021).

    Google Scholar 

  53. Abeygunawardane, D. et al. Resource frontiers and agglomeration economies: the varied logics of transnational land-based investing in southern and eastern Africa. Ambio https://doi.org/10.1007/s13280-021-01682-z (2022).

  54. Cramb, R. White Gold: The Commercialisation of Rice Farming in the Lower Mekong Basin (Palgrave Macmillan, 2020).

  55. Miranda, J., Börner, J., Kalkuhl, M. & Soares-Filho, B. Land speculation and conservation policy leakage in Brazil. Environ. Res. Lett. 14, 045006 (2019).

  56. Romero-Muñoz, A. et al. Fires scorching Bolivia’s Chiquitano forest. Science 366, 1082 (2019).

    Google Scholar 

  57. Rajão, R. et al. The rotten apples of Brazil’s agribusiness. Science 369, 246–248 (2020).

    Google Scholar 

  58. Grau, R., Kuemmerle, T. & Macchi, L. Beyond ‘land sparing versus land sharing’: environmental heterogeneity, globalization and the balance between agricultural production and nature conservation. Curr. Opin. Environ. Sustain. 5, 477–483 (2013).

    Google Scholar 

  59. Ribeiro, N. S. et al. in Miombo Woodlands in a Changing Environment: Securing the Resilience and Sustainability of People and Woodlands (eds Ribeiro, N. S. et al.) 55–100 (Springer, 2020).

  60. Rudel, T. K. The national determinants of deforestation in sub-Saharan Africa. Phil. Trans. R. Soc. B 368, 20120405 (2013).

  61. Bey, A. et al. Mapping smallholder and large-scale cropland dynamics with a flexible classification system and pixel-based composites in an emerging frontier of Mozambique. Remote Sens. Environ. 239, 111611 (2020).

    Google Scholar 

  62. Waeber, P. O. et al. Dry forests in Madagascar: neglected and under pressure. Int. For. Rev. 17, 127–148 (2015).

    Google Scholar 

  63. Gasparri, N. I., Kuemmerle, T., Meyfroidt, P., le Polain de Waroux, Y. & Kreft, H. The emerging soybean production frontier in southern Africa: conservation challenges and the role of south–south telecouplings. Conserv. Lett. 9, 21–31 (2016).

    Google Scholar 

  64. Reyes-García, V. et al. Ethnobotanical skills and clearance of tropical rain forest for agriculture: a case study in the lowlands of Bolivia. Ambio 36, 406–408 (2007).

    Google Scholar 

  65. Huaman, E. S. Tuki Ayllpanchik (our beautiful land): Indigenous ecology and farming in the Peruvian highlands. Cult. Stud. Sci. Educ. 11, 1135–1153 (2014).

  66. Nahayo, A. et al. Factors influencing farmers’ participation in crop intensification program in Rwanda. J. Integr. Agric. 16, 1406–1416 (2017).

    Google Scholar 

  67. Knoke, T. et al. Confronting sustainable intensification with uncertainty and extreme values on smallholder tropical farms. Sustain. Sci. 17, 1977–1994 (2022).

  68. Rudel, T. K., Bates, D. & Machinguiashi, R. Ecologically noble Amerindians? Cattle ranching and cash cropping among Shuar and colonists in Ecuador. Lat. Am. Res. Rev. 37, 144–159 (2002).

    Google Scholar 

  69. Turner, B. L. & Shajaat Ali, A. M. Induced intensification: agricultural change in Bangladesh with implications for Malthus and Boserup. Proc. Natl Acad. Sci. USA 93, 14984–14991 (1996).

    CAS  Google Scholar 

  70. Netting, R. M. Smallholders, Householders: Farm Families and the Ecology of Intensive, Sustainable Agriculture (Stanford Univ. Press, 1993).

  71. Cajete, G. Native Science: Natural Laws of Interdependence (Clear Light Publishers, 2000).

  72. Salmón, E. Kincentric ecology: Indigenous perceptions of the human–nature relationship. Ecol. Appl. 10, 1327–1332 (2000).

    Google Scholar 

  73. Umeek Principles of Tsawalk: An Indigenous Approach to a Global Crisis (UBC Press, 2011).

  74. Newton, P., Miller, D. C., Byenkya, M. A. A. & Agrawal, A. Who are forest-dependent people? A taxonomy to aid livelihood and land use decision-making in forested regions. Land Use Policy 57, 388–395 (2016).

    Google Scholar 

  75. Fa, J. E. et al. Importance of Indigenous peoples’ lands for the conservation of intact forest landscapes. Front. Ecol. Environ. 18, 135–140 (2020).

    Google Scholar 

  76. Brondízio, E. S. et al. Locally based, regionally manifested, and globally relevant: Indigenous and local knowledge, values, and practices for nature. Annu. Rev. Environ. Resour. 46, 481–509 (2021).

    Google Scholar 

  77. LandMark: The Global Platform of Indigenous and Community Lands (LandMark, 2021); http://www.landmarkmap.org/

  78. At a Crossroads: Consequential Trends in Recognition of Community-Based Forest Tenure from 2002–2017 (Rights and Resources Initiative, 2018).

  79. Begotti, R. A. & Peres, C. A. Brazil’s Indigenous lands under threat. Science 363, 592–592 (2019).

    Google Scholar 

  80. Robinson, B. E. et al. Incorporating land tenure security into conservation. Conserv. Lett. 11, e12383 (2018).

    Google Scholar 

  81. Fernández-Llamazares, Á. et al. Reframing the wilderness concept can bolster collaborative conservation. Trends Ecol. Evol. 35, 750–753 (2020).

    Google Scholar 

  82. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).

  83. Zabel, F., Putzenlechner, B. & Mauser, W. Global agricultural land resources – a high resolution suitability evaluation and its perspectives until 2100 under climate change conditions. PLoS ONE 9, e107522 (2014).

    Google Scholar 

  84. Phalan, B. et al. How can higher-yield farming help to spare nature? Mechanisms to link yield increases with conservation. Science 351, 450–451 (2016).

    CAS  Google Scholar 

  85. Lambin, E. F. et al. The role of supply-chain initiatives in reducing deforestation. Nat. Clim. Change 8, 109–116 (2018).

    Google Scholar 

  86. Fischer, J. et al. Should agricultural policies encourage land sparing or wildlife-friendly farming? Front. Ecol. Environ. 6, 380–385 (2008).

    Google Scholar 

  87. Miles, L. et al. A global overview of the conservation status of tropical dry forests. J. Biogeogr. 33, 491–505 (2006).

    Google Scholar 

  88. Portillo-Quintero, C. A. & Sánchez-Azofeifa, G. A. Extent and conservation of tropical dry forests in the Americas. Biol. Conserv. 143, 144–155 (2010).

    Google Scholar 

  89. Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).

    Google Scholar 

  90. Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).

    Google Scholar 

  91. Murphy, B. P., Andersen, A. N. & Parr, C. L. The underestimated biodiversity of tropical grassy biomes. Phil. Trans. R. Soc. B 371, 20150319 (2016).

  92. Ellison, D., Morrison, C. E., Locatelli, B., Sheil, D. & Sullivan, C. A. Trees, forests and water: cool insights for a hot world. Glob. Environ. Change 46, 51–61 (2017).

    Google Scholar 

  93. Lehmann, C. E. R. & Parr, C. L. Tropical grassy biomes: linking ecology, human use and conservation. Phil. Trans. R. Soc. B 371, 20160329 (2016).

  94. Rudel, T. K. The dynamics of deforestation in the wet and dry tropics: a comparison with policy implications. Forests 8, 108 (2017).

  95. Singh, C. Tropical Dry Deciduous Forest: Research Trends and Emerging Features (Springer, 2017).

  96. Hasnat, G. N. T. & Hossain, M. K. in Handbook of Research on the Conservation and Restoration of Tropical Dry Forests (eds Bhadouria, R. et al.) 1–23 (IGI Global, 2020).

  97. Baumann, M. et al. Carbon emissions from agricultural expansion and intensification in the Chaco. Glob. Change Biol. 23, 1902–1916 (2017).

    Google Scholar 

  98. Sandker, M., Finegold, Y., D’Annunzio, R. & Lindquist, E. Global deforestation patterns: comparing recent and past forest loss processes through a spatially explicit analysis. Int. For. Rev. 19, 350–368 (2017).

    Google Scholar 

  99. Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    CAS  Google Scholar 

  100. Welch, J. R., Brondizio, E. S. & Coimbra, C. E. A. Jr. Remote spatial analysis lacking ethnographic grounding mischaracterizes sustainability of Indigenous burning regime. Biota Neotrop. 22, 1 (2022).

  101. Fehlenberg, V. et al. The role of soybean production as an underlying driver of deforestation in the South American Chaco. Glob. Environ. Change 45, 24–34 (2017).

    Google Scholar 

  102. Gasparri, N. I. & le Polain de Waroux, Y. The coupling of South American soybean and cattle production frontiers: new challenges for conservation policy and land change science. Conserv. Lett. 8, 290–298 (2014).

    Google Scholar 

  103. De Sy, V. et al. Land use patterns and related carbon losses following deforestation in South America. Environ. Res. Lett. 10, 124004 (2015).

    Google Scholar 

  104. Song, X.-P. et al. Massive soybean expansion in South America since 2000 and implications for conservation. Nat. Sustain. https://doi.org/10.1038/s41893-021-00729-z (2021)

  105. Kuemmerle, T. et al. Challenges and opportunities in mapping land use intensity globally. Curr. Opin. Environ. Sustain. 5, 484–493 (2013).

    Google Scholar 

  106. Erb, K.-H. et al. A conceptual framework for analysing and measuring land-use intensity. Curr. Opin. Environ. Sustain. 5, 464–470 (2013).

    Google Scholar 

  107. Kehoe, L. et al. Biodiversity at risk under future cropland expansion and intensification. Nat. Ecol. Evol. 1, 1129–1135 (2017).

    Google Scholar 

  108. Villoria, N. B., Byerlee, D. & Stevenson, J. The effects of agricultural technological progress on deforestation: what do we really know? Appl. Econ. Perspect. Policy 36, 211–237 (2014).

    Google Scholar 

  109. FAOSTAT (FAO, 2021); www.fao.org/faostat

  110. Pendrill, F., Persson, U. M., Godar, J. & Kastner, T. Deforestation displaced: trade in forest-risk commodities and the prospects for a global forest transition. Environ. Res. Lett. 14, 055003 (2019).

  111. Weiss, D. J. et al. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553, 333–336 (2018).

    CAS  Google Scholar 

  112. Global Agro-Ecological Zones (GAEZ v3.0) (FAO/IIASA, 2012); https://gaez.fao.org/

  113. Center for International Earth Science Information Network - CIESIN - Columbia University, Gridded Population of the World, Version 4 (GPWv4): Population Count, Revision 11 (NASA SEDAC, CIESIN, 2021); https://doi.org/10.7927/H4JW8BX5

  114. R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).

  115. Butsic, V., Lewis, D. J., Radeloff, V. C., Baumann, M. & Kuemmerle, T. Quasi-experimental methods enable stronger inferences from observational data in ecology. Basic Appl. Ecol. 19, 1–10 (2017).

    Google Scholar 

  116. Wauchope, H. S. et al. Evaluating impact using time-series data. Trends Ecol. Evol. 36, 196–205 (2021).

    Google Scholar 

  117. Hernán, M. A. & Robins, J. M. Causal Inference: What if (Chapman & Hall/CRC, 2020).

  118. Hirano, K. & Imbens, G. W. in Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives (eds Gelman, A. & Meng, X.-L.) An Essential Journey with Donald Rubin’s Statistical Family 73–84 (2004).

  119. Greifer, N. WeightIt: Weighting for Covariate Balance in Observational Studies (2021).

  120. Bürkner, P. C. Advanced Bayesian multilevel modeling with the R package brms. R J. 10, 395–411 (2018).

    Google Scholar 

  121. Vehtari, A. et al. loo: Efficient Leave-One-Out Cross-Validation and WAIC for Bayesian Models (2020).

  122. Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).

Download references

Acknowledgements

This work was supported by the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement 101001239 SYSTEMSHIFT). Á.F.-L. was supported by a postdoctoral grant from the Helsinki Institute of Sustainability Science (HELSUS). This work contributes to the Global Land Programme (https://glp.earth).

Author information

Authors and Affiliations

Authors

Contributions

M.P., P.M. and T. Kuemmerle conceived the research idea. M.P., Á.F.-L., M.B. and S.T.G. collected the data. M.P. led the design of the analytical framework, the data analysis and the writing. T. Krueger contributed to the data analysis. Á.F.-L., P.M., T. Krueger, M.B., S.T. G. and T. Kuemmerle contributed to the interpretation of results and the writing of the manuscript.

Corresponding author

Correspondence to Marie Pratzer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Thomas Knoke, Matias Mastrangelo and Melvin Lippe for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Conditional effects of market orientation and Indigenous land stewardship across continents.

Curves show the mean effect and shadows the 95% credible interval of the posterior distribution when all model predictors, besides the one of interest, are set to their mean value or reference category. Green curves represent the average continent-level effect of yield change on forest loss on lands without Indigenous land stewardship. Red and blue curves show how the relationships between yield change and forest loss is affected by high (1 standard deviation above mean) or low (1 standard deviation below mean) values of market orientation, or presence of Indigenous lands.

Extended Data Fig. 2 High influence of rice classification on modelled effect of share of non-staple crops (approximating market orientation) in Asia.

a, With rice classified as non-staple crop, interaction effect of share of non-staples reinforces positive relationship of yield change and forest loss in Asia. b, With rice classified as staple crop, share of non-staples has a dampening effect on the positive relationship of yield change and forest loss in Asia.

Extended Data Fig. 3 Modelled effect of yield change from earlier time periods on forest loss in the study period.

The modelled effect of yield change on past time periods showed the same trend and was of comparable magnitude as the effect of yield change in the study period, thus strengthening the assumption that the temporal design of our analysis did not miss significant time lag effects of intensification on deforestation.

Extended Data Fig. 4 Predictive checks.

ab, Comparing observations to a sample of 100 a, prior model predictions generated according to our final prior specifications, and b, posterior model predictions based on priors and data, provided insights about the plausibility of model assumptions and the reliability of model results.

Supplementary information

Supplementary Information

Supplementary Notes 1–7, Supplementary Figs. 1 and 2, and Supplementary Tables 1 and 2.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pratzer, M., Fernández-Llamazares, Á., Meyfroidt, P. et al. Agricultural intensification, Indigenous stewardship and land sparing in tropical dry forests. Nat Sustain 6, 671–682 (2023). https://doi.org/10.1038/s41893-023-01073-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-023-01073-0

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene